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Determining ¢} Using S Parameter Data

J. Michael Drozd and William T. Joines

Abstract—A method is presented for determining frequency selectivity
(@) of a network using scattering (5) parameter data, data that is readily
available from network measurements or analysis. The approach is based
on a formulation for () that uses the change in reactance of the resonant
circuit with frequency. The method yields accurate (@ results for both
high and low () resonators. Furthermore, the method is easy to implement
and to understand. An example is given for calculating the Q) of a tapped-
stub resonator. Using this example, the new method is compared to the
critical points (CP) method, an approach based on a Foster network type
of formulation.

I. INTRODUCTION

Determining the @ of a resonator is very important for describing
the frequency-selective performance of a filter. Accordingly, it is
desirable to have a technique for determining () that is both easy
to implement and accurate. Furthermore, since network analyzers
and transmission line modeling software are prevalent, this technique
should be able to use data readily available from these sources. In
this article we present a method for determining ) which meets
these needs.

The method presented is derived directly from the fundamental
definition of ¢} without any approximations. Because the method
derives directly from the fundamental definition, the method does
not impose any structure on the resonator being measured, such as
a simple R-L—C circuit representation. Thus, the method is able to
accurately determine the () for transmission line circuits and other
resonators which have multiple pole structures. As a result, it is
accurate for both high @ and low Q circuits.

The only information required by the method is S parameter data at
frequencies near the resonant point of the resonator. Since S param-
eter data is readily available from network analyzer measurements
or from network analysis or modeling software, the method is easy
to implement. For this article we discuss and use only S:1 data to
determine (), but there is an equally valid formulation using Sa;. The
present formulation can easily be extended to use other equivalent
forms of S parameter data (two-port network parameters), such as
ABCD matrix data and Y, Z parameter data.

There are a number of other methods for determining ¢ [1]
and [2]. A few recent papers have presented methods that use the
network analyzer to measure () [3] and [4]. However, these methods
have several limitations. One limitation is that several of these
methods require reading information from a Smith Chart which is
both cumbersome and subject to user error. Another limitation of
these methods is that they use approximations in their formulations
that create errors in low ) resonators. A final limitation to other
methods is that they are less tractable to a novice user, and thus less
likely to be implemented based on their complexity.

In this article we begin by providing a formulation for () that is the
basis for the method presented. We then derive the equations needed
to implement this method using S11 data. This is followed by an
example of a tapped-stub resonant circuit which serves to illustrate
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Fig. 1. General circuit representations.

the implementation of the method. We conclude by comparing the
results obtained from this method with the critical points (CP) method
[4] on three different tapped-stub resonator filters.

II. DEFINITION OF @
‘We begin our discussion by stating the fundamental definition of Q)

Peak Energy Stored
Q = wo gy

Average Power Lost”

1)

In (1), fo = wo/(27) is the resonant frequency, or the frequency at
which @ is evaluated. The numerator is the peak energy stored in
either the electric or the magnetic field, and the denominator is the
average power dissipated within or coupled out of the network. The
problem with this fundamental definition, as with many fundamental
definitions, is that (1) does not lend itself to making physical
measurements. Thus, we need to create a representation of ¢ in terms
of measurable parameters that is based on this fundamental definition.

A. Representation of ()

The representation of ¢) to be used as the basis for the present
method begins with representing a general circuit in terms of a series
impedance Z,, expressed as,

Zin =R+ jX @
or a parallel admittance Y., expressed as
Yo =G+ jB (3)

where R, X, GG, and B are all functions of frequency, w. These
are shown pictorially in Fig. 1. In Fig. 1, we represent the source
resistance by Zp and the source conductance by Yp. In doing so,
we implicitly assume that the source resistance or conductance is
real and does not vary with frequency. Altering this assumption does
not change our approach, but it does increase the complexity of the
equations used to determine ().
The reactance X may also be expressed as [5]

_ 4(Wg — Wg)
X=—"% @
and the susceptance B as
B= -——4”1‘,;*%) 5)
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where Wr and Wy are the stored electric and magnetic energies,
respectively, in the system; and I and V" are the input current and
voltage, respectively.

Furthermore, it can be shown [5] that

0X  Wrg+Wy

%t TIr ©
and

0B Wi+ Wg

A T D

where Wg + Wy is the total energy stored in the system. This
total energy stored in the system reaches a maximum at the resonant
frequency, w = wo. Thus

I 0x
Peak Energy Stored = [ ) %} —
V'V* 0B
- [ 4 O_w} e ®)

The average power lost by the system is given by

Average Power Lost = 2 II" (R + Zo)
:%VV*(G+Y5) ()]

where the total series resistance is R + Zg, and the total parallel
conductance is G + Y.

Substituting (6) and (9) into the fundamental definition of @ in (1),
we obtain the following representations for the loaded @
(10)

w oX
@= {Q(R—I— Zo) %L:WO

and

Qz{ (11

v __ 9B
Q(G + Yo) aw w:wo.
The technique developed herein for determining () is based on the
expressions given in (10) and (11). These expressions are also given
in [6, p. 414].

B. Other Q) Determination Techniques

There are a number of other methods that may be used to determine
Q. Only two will be mentioned here for comparison purposes. A
simple and often used expression for determining ¢ is

fo
f2 - fl

where fo is the resonant frequency, and f» and f, are the upper-
frequency and the lower-frequency 3-dB points, respectively. This
expression is derived by assuming that the resonator has a simple
R-1-C or G-L-C circuit equivalent. This expression is valid for
resonators with a single resonant point. However, for resonators with
multiple resonant points this expression is approximate because other
resonances will affect the 3-dB values of the particular resonance
being considered. Thus, for multiple resonant point structures such
as transmission lines the method expressed in (12) is only valid for
high @ circuits where resonant points are well isolated. For low Q
circuits this expression is very inaccurate. This will be shown to be
the case by an example in Section V.

Other () determination techniques have relied on a Foster network
type of formulation. The equivalent circuit for a Foster network can
be expressed as [4]

Q= (12)

Zin = Re + jwL. + Ro — (13)
. w
1+5Qo (— - —9>
Wao w
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where R. and L. are the external elements to the resonant points
being measured. The goal in using this formulation is to extract
(0. This is typically done using information from the Smith Chart.
However, reading information from a Smith Chart can lead to
inaccurate results. In addition, methods for determining () that are
based on this formulation use the approximation

YW

W w wo

W — Wo

. (14)

This approximation causes these techniques to lose accuracy for low
Q circuits. This fact will be illustrated in Section V where the present
method (developed herein) is compared to the CP method, a method
that uses the Foster network formulation in (13).

III. PROCEDURE FOR DETERMINING () USING S1;

As mentioned in Section II-A, the basis for the method presented
here is the representation of ) given in (10) and (11). With these
expressions, () can be determined by evaluating 0X/8w and R or,
in terms of admittance, 9B /3w and G at the resonant frequency, wo.
To evaluate these terms at the resonant frequency we use S1: data.

We begin by converting the i1 data into the form of (2) or (3).
Starting with the definition of S1;

Zzn - ZO
S ="0—rr
" Zzn + ZO
Yo — Yin
= SN 1
Yo 1 Yon ()
Solving for Z,, and Y, in terms of Si;
1+ 511
Zn =27, 16
°1 5, (16)
and
. 1- 511
Yin =Y ——. 1
*1T+5, an
S11 has both real and imaginary terms represented as
511 = Re[511]+jIm[511]. (18)

Substituting (18) into (16) and (17) and expanding both expressions
into real and imaginary terms yields

{(1 +Re[S11])(1 = Re[S11]) — Im[S1:]*}
(1 —Re[S11])? + Im[Su:]?
2Im[S:4]

Zzn = ZO

+]‘ZO (1 — Re [511])2 + Im [511]2 (19)
and
v —y {1+Re[Si])(1 ~ Re[Su]) ~ Im[S1:])%)}
w0 (1 +Re[S11])? + Im [S1;]?
e —2Im[511]
+ito (1+Re[511])2+1m[511]2' (20)
By comparing terms of (19) with (2)
o {1 +Re[Su])(1 —Re[S11]) — Im[S11]°}
k=2 (1 — Re[S11])2 + Im [S11)2 @h
_ 2Im [511]
X =20 AT RS + W[5 22)
or comparing (20) with (3)
- {(1+Re[S11])(1 = Re[S11]) — Im[S11]*)}
=Y
G 0 (1+Re[5‘11])2 +Im[5’11]2 (23)
B= -2 Im[Su] (24)

Y T RS0 + mSLE

Equations (21) and (23) allow us to calculate R and G, respectively,
at the resonant frequency directly from S1;1 data. The next step is to
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TABLE 1
STEPS IN DETERMINING @ USING S71 DATA

| Step | Zin Network Representation

Yin Network Representation

1 | Collect S5;; data

Collect S;; data

2 | Convert S;; data into Re[Si;]
and Im[S;;] form, if needed

Convert S;; data into Re[Si,]
| and Im[S;;] form, if needed

3 |Find resonant frequency, fo

Find resonant frequency, fo

4 | Solve for R using (21) at
-the resonant frequency

Solve for G using (23) at
the resonant frequency

5 | Solve for X using (22)

around the resonant frequency

Solve for B using (24)
around the resonant frequency

6 |Use (25) to solve for %X

Use (26) to solve for -‘g%

Use (11) to determine Q

7 |{Use (10) to determine Q

calculate 8X /0w and OB/dw at the resonance frequency, wo, using
(22) and (24). Since S1; is a function of frequency, w, (22) and
(24) are functions of frequency, and thus we use the functional form,
S11(w), to find X(w) and B(w) and then differentiate with respect
to w. However, S11 data is typically given in discrete form, such as
that provided by a network analyzer. Thus, a numerical derivative
is required. This numerical derivative is typically straightforward
since X (w) and B(w) are fairly linear functions of frequency at the
resonance point. As a result the slope can be calculated with a simple
regression formula. The following equations are used to calculate the
slope at the resonant point from discrete X [w] and B[w] data

0xX n(TwX) - (Tw)(TX)
dw T n(Zw?) - (Tw)?

25

and
0B

dw

o n(ZwB)Q— (Ew)(ZQB) 26)
n(Xw”) — (Zw)

where n is the number of discrete points of data used to calculate

the slope.

The final step is to substitute the information from (25) and (21) at
the resonant point into (10) to yield (). Likewise, using admittances,
(26) and (23) at the resonant frequency are substituted into (11) to
yield . Table I summarizes the steps used to calculate @ from 511
data. An example follows.

IV. TAPPED-STUB RESONATOR EXAMPLE

The following is an example for determining the ¢ for a microstrip
bandpass filter. For this example we chose a tapped-stub resonator
circuit [6]. A’ tapped-stub resonator is created by changing the
connection point of a stub on the main transmission line. This is
illustrated in Fig. 2.

The particular two-port, tapped-stub resonator shown in Fig. 2 is
referred to as a half wavelength tapped-stub resonator because the
total length of the stub is I = X\o/2 at resonance. Thus, the resonant
condition is given by

91+92=ﬂ‘i.
Wo

We introduce a tapping factor, k, which gives the proportional length
of the stub on each side of the main line where 0 < k < 1 such that
(28)
and from (27)

‘ 9

@7

Fig. 2. Two-port, half-wavelength tapped stub resonator.
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Fig. 3. S11 magnitude for tapped-stub resonator with k = % ’

Note that k& = 0 represents an untapped half wavelength open stub,

_and k = 1 represents a pair of quarter wavelength open stubs. The

tapped-stub is well suited as an example because as the tapping factor
k increases, the  of the filter increases without significantly affecting
the resonant frequency of the filter. The @ of this circuit is calculated
as follows.

The node admittance of the two-port half-wavelength tapped stub
is given by .

Y =2Y;+Y1 +Ya. (30)
Substituting the admittance values
‘ Y = 2Y, + jYoi(tan 62 + tan 61). 31
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TABLE II
CALCULATION OF 8B/8f ForR k =

1

2

| £ (MHz) [ Is11] | /811 JRe[S11 ][ Im[S11] G B ]
590 5.40E-02 | 93.1 | -0.00292 | 0.053921 0.02 -0.00216
592 4.30E~02 | 92.5 | -0.00188 | 0.042959 | 0.020001| -0.00172
594 3.20E-02 | 91.8 | -0.00101| 0.031984 | 0.019999 | -0.00128
596 2.10E-02 | 91.2 | -0.00044 | 0.020995 0.02 -0.00084
598 1.10E-02| 90.6 | -0.00012{ 0,010999 0.02 -0.00044
600 5.90E-10| 90.2 | -2.1E-12| 5.9E-10 0.02 ~2.4E-11
602 1.00E-02| -90.6 | -0.0001 -0.01 0.02 0.0004
604 2.10E-02 | -91.2 | -0.00044 | -0.021 0.02 0.00084
606 3.10E-02 | -91.8 | -0.00097 { -0.03098 | 0.020001 | 0.001241
608 4.10E-02 | -92.4 | -0.00172 | -0.04096 | 0.020001 | 0.001641
610 5.10E-02 | -92.91-0.00258 | ~0.05093 | 0.019999 | 0.002043
. 0B/of |210x 1071

Thus, the conductance is given by
G = 2Y5. (32)

Using (28) and (29), the susceptance is given by

W W
B =Y} [tan k — —k)—/|.
o1 [ an s +tan (2 — k) ZWO] (33)

From (33), the partial derivative of B with ‘respect to w evaluated
at wo is
0B

oD = 7TY01
Ow -

QW() )

[k sec” k g +(2—k) sec®> (2—k) %] (34)
w=wq .
Using (11), (32), and (34), the Q of the two-port, half wavelength
tapped-stub resonator is given by

wYo1
4Yo

Examination of (35) reveals that as k¥ — 0, @ — wYo1/4Yo and
as k — 1, Q — oo. The equivalent expression for a one-port, half
wavelength tapped-stub resonator is given in [6, p. 426].

As an illustrative case we have chosen a circuit with k = %, Yo
50€2, Yo; = 509, and fo = 600 MHz. The value of k = % was
chosen for two primary reasons. First, the theoretical @ is low which
will allows us to validate the new method for low @) circuits. Second,
this circuit can be easily implemented on microstrip with minimal
losses. .

The first step is to collect S;; data around the resonant frequency.
The data we collected for this example is from a transmission line
software package called “Puff.” Fig. 3 shows S1: magnitude data for
this example and Fig. 4 shows Sq11 phase data around the resonant
frequency, fo = 600 MHz.

The next step is to use (21) and (22), or (23) and (24), depending on
the desired circuit representation. As indicated earlier, for the tapped-
stub resonator, representing the circuit in terms of an input admittance
Y;, is appropriate, and thus we use (23) and (24). Table II shows the
S11 data that was collected around the resonant frequency. This data
is in terms of a magnitude and phase angle. We also show in this table
the S11 data transformed into its real and imaginary components, and
finaily using (23) and (24), we show the S;1 data converted into G
and B.-

Next using (26), the derivative of B with respect to frequency is
approximated. Fig. 5 shows B versus f = w/2x around the resonant
frequency fo for the modeled results. The derivative, 9B/0w is
calculated by finding the slope of this line and dividing by 2.
To calculate the slope, 11 points are used, or n 11. This

Q=

2 m
k—.
sec” k3 (€M)

S11 Phase (Degrees)

Frequency (MHz)

Fig. 4. Si1 phase for tapped-stub resonator with k = —;—

TABLE IIi
COMPARISON BETWEEN () MEASUREMENTS FOR k = %
I 1 a9 |
Theory 1.570796
Modeled 1.576559
Measured 1.480502 |
Modeled with Loss | 1.476844
3-dB Points Method | 0.566667

yields a slope dB/8f = 2.10 x 107'°, which corresponds to
OB/Ow = 3.34 x 107!, The solid line in Fig. 5 represents this
slope -approximation for the modeled data. We have also included in
Fig. 5 data from an actual circuit measured on a network analyzer.
Finally, (11) is used to evaluate (). The value of G at the resonant
frequency is used for this calculation, as G = 0.02 S. For our circuit
the modeled results yield @@ = 1.576 559. ‘
Table III compares the @ determined from theory, from the
transmission line modeling software, and from network analyzer
measurements on an actual circuit.'Notice that the measured results
are significantly below the theoretical and modeled results. This is
due to losses in the circuit that have not been accounted for in the .
model. Losses will lower the Q of a circuit because losses increase
the Average Power Lost in the denominator of (1). As a result, we
have treated the case where losses were added to the transmission line

o~

IFor the measured circuit Rogers RT Duroid 5880 with two-sided 1-oz
rolled copper cladding was used. The relative dielectric constant was 2.2 and
the substrate thickness was 1/8 in. Network analyzer measurements were made
with a Hewlett Packard 8753A.
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TABLE IV
COMPARISON OF ) USING DIFFERENT METHODS

Case Theory | Current Method | Critical Points | 3-dB Points |
kE=1/2 1.570796 1.576559 0.958023 0.566667
k=9/10 [ 32.09409 32.13687 28,2282 15.38462
k=99/100 | 3183.36 3189.031 3187.96 3191.489
8 8 = The CP method is valid at higher values of ¢} but loses accuracy at
0.0025 w AT VO © low values of . The inaccuracy at low values of () is largely due to
0002 b b the approximation given in (14). It can also be attributed to errors in
0.0015 4 reading the Smith chart. The 3-dB Points method is clearly inferior to
0.001 both the current method and the CP method. The 3-dB Points method
0.0005 - can only be used reliably for high-Q resonators with well isolated
@ 0 resonant points and for resonators with a single resonant point.
-0.0005 -
_0001 4. B P
-0.0015 - V1. CONCLUSION
20,002 etk 1 In this article we have developed a technique for determining @
-0.0025 F:reque:ncyiMHz:) """ Linear Approx that is both accurate and easy to implement. It has proven to be

Fig. 5. B versus frequency for modeled and measured, k — %

modeling software. A loss tangent of 0.05 is used because this level of
loss is consistent with the losses associated with a microstrip circuit
and the network analyzer losses. Note that the (J for the modeled
results with these losses is in fairly good agreement with the measured
results. For comparison we have also shown the results using the 3-
dB Points method. As expected, this yielded an inaccurate result for
this low-@) circuit. .

V. COMPARISON TO CRITICAL POINTS METHOD

_In this section we compare the current method with both the CP
method and the 3-dB points method. For this comparison we chose
three cases of the tapped-stub resonant circuit, ¥ = %, k = 5, and
k= %. By (35), increasing k will increase (). Table IV shows
the results from theory, the current method, the CP method, and the
3-dB Points method.

Clearly this comparison indicates that the approach developed

herein using S-parameter data is valid for a wide range of () values.

accurate for both low-@) and high-() resonators. In fact we have
demonstrated that it is more accurate than another method, the CP
method, that relies on a Foster type of circuit formulation. The
formulation for this method is very straightforward which makes this
method tractable for a novice user. Furthermore, because the method
uses S-parameter data that is easy to obtain, this method can be
implemented with relatively little effort.
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